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Waves which are almost always present on the surface of films flowing down an inclined 
surface have a strong effect on heat and mass transfer processes in the film [i, 2]. All of 
the existing studies of wavy fluid films have dealt with traveling waves occurring as a 
result of natural instability of the film flow or the superposition of artificial perturba- 
tions. However, standing as well as travelling waves exist on the film, the former being 
the result of local perturbations on the bottom or side walls of the channel. A complex 
system of standing waves develops when artificial wall roughness is employed in order to 
intensify heat transfer in films [3]. 

One feature of standing waves formed by localized perturbations is their three-dimen- 
sional character. The waves are horseshoe-shaped and correspond outwardly to single three- 
dimensional travelling waves (Fig. i). Serious mathematical difficulties are encountered 
in any theoretical description of three-dimensional wave motion. No fewer problems arise 
in the experimental study of travelling three-dimensional waves due to their explicit 
transience and strong interaction with one another. Standing three-dimensional waves, in 
contrast to travelling waves, are convenient objects for detailed experimental study and for 
checking two- and three-dimensional wave theories. 

Here, we experimentally and theoretically investigate the dispersion and form of the 
crests of three-dimensional standing waves on an obliquely flowing film of a viscous fluid 
within a broad range of angles of inclination and fluid discharges and properties. 

Experimental Procedure. The tests were conducted on an experimental unit consisting of 
a working section - a trough - and a receiver tank, centrifugal pump, rotameters, and control 
valves. The trough was a smooth organic-glass plate 150 mm wide and i000 mm long. The film 
of fluid flowed over the surface of this plate. The fluid reached the surface of the plate 
by being poured over its rounded edge from a distributing tank attached to the trough. 
Flowing from the trough, the fluid was collected in the receiver tank. The receiver tank was 
also attached to the chute. The film flow was bounded laterally by metal walls with a 
ground surface. 

The trough was set on a post which made it possible to finely regulate its inclination 
in two planes. The angle of inclination of the trough to the horizontal was changed from 75 
to 2.75 ~ in the tests. The accuracy of measurement of the angle of inclination was 0.25 ~ . 

The thickness of the film in the wave-free zone was measured by the contact method using 
a needle attached to a dial gage with graduations of 0.01 man. Fluid discharge was determined 
from the readings of RS-5 rotameters. Fluid temperature was recorded by a mercury thermo- 
meter with graduations of 0.1~ The uniformity of wetting of the trough surface was moni- 
tored visually from the symmetry of the wave pattern and from values of film thickness at 
different points of the trough. 

Stationary standing waves were created in the smooth zone of the trough by having the 
sharp tip of the needle touch the surface of the film. The characteristics of the waves (form 
of crests and wavelength) were determined from photographs made on the side of the wetted 
surface of the trough. Typical photographs of the standing waves are shown in Fig. la and b. 
The wavelength was measured only in the direction of the flow. The accuracy of these measure- 
ments was within the range 2-7%. It was found that the wavelength and crest shape are inde- 
pendent of the depth of submersion of the needle. 

As the working fluid we used distilled water and solutions of ethyl alcohol and glycerin. 
The physical properties of the main solutions and the ranges of Reynolds numbers Re and angles 
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of trough inclination 0 are shown in Table i, where t is temperature, v is viscosity, o is 
surface tension, p is fluid density, Fi = o3/p3gv 4 is the film number, g is acceleration 
due to gravity, Re = q/v, and q is the discharge of the fluid. 

Dispersion of the Standing Waves. Since the absolute phase velocity c = 0 for standing 
waves, by the dispersion we mean the dependence of the wavelength I (or wave number k) on 
flow velocity. In analyzing data, it is convenient to use Re rather than flow velocity. 

The Nusselt relations (below) are valid for a smooth laminar steady-state flow 

l i e  I4h :l s i n  () /f ly:  q / v ,  II8 g4t" s i n  0 .2x ' ,  

where u S is the velocity on the surface of the film; h is the thickness of the film. The 
dimensionless wave number is determined as k = kh = 2vh/l. 

Our experiment showed that there are both short (k >> i) and long (k < i) standing 
waves on the film surface. Almost all existing theories of wavy fluid films are based on a 

long-wave approximation, but these theories are unsuitable for describing standing waves in 
the great majority of cases because there are no solutions c = 0. 

A universal two-wave model equation for long waves on an obliquely flowing film was 

derived in [4]. It describes different types of waves, including standing waves. It was 
used in [4] to obtain the dispersion relation 

.T[C ~ 1 1  - __,,,,,~ + 1.2--  A j I ~- 27G, 3)(7 I.,~;) 1/~ (1)  

Here, the dimensionless phase velocity c = c/u0; the mean velocity u 0 = gh 2 sin 0/3v; A = 
3 cot 0/Re; B = Re 3 sin 0/We; the Weber number We = o/pgh 2. 

Equation (i) has two pairs of nonintersecting roots, only one of which was analyzed in 
[4]. The complete dispersion curves are shown in Fig. 2 for Re = 50, 0 = 75 ~ , Fi*/II = 9.51 
(water). The two branches of the dispersion curve are symmetrical relative to the axis c = 
1.2. It follows from the complete di_spersion relations [4] that the w_aves grow_exponentially 
over time at phase velocities 1.2 < c < 3 and decay exponentially at c > 3 and c < 1.2. 
Neutral waves exist at c = 3. 

The linear asymptotes of the dispersion curves at high k are described by the relation 

or, in dimensional form 
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Fig. 2 

This is the dispersion law for capillary waves on shallow water. The term 1.2u 0 reflects 
the contribution of the mean flow. 

Assuming c = O, we use (i) to obtain the dispersion relation for standing waves 

A: 1~, 7 ,  (t ") A) / 27 '"~ ( 3 )  
, '~ -- (),~H (I,~ - .,I) ~ ' 

hav ing  two r o o t s  kz and k2,  co r respond ing  to  p o i n t s  1 and 2 in  F ig .  2. At  p o i n t  1, t he  
group v e l o c i t y  Cg = c + k d ~ / d k  >_c, s i n c e  dc /dk  > O. Thus, i n  accordance w i t h  t he  t h e o r y  
o f  d i s p e r s i v e  waves, waves w i t h  k l  w i l l  be formed downstream o f  an o b s t a c l e .  

At  p o i n t  2 ,  ~g < ~. Thus, p e r t u r b a t i o n s  w i t h  k2 deve lop  ahead o f  the  o b s t a c l e .  

Equat ion  (3)  can be r e w r i t t e n  i n  more compact form 

w h e r e  now t h e  d i m e n s i o n l e s s  wave  n u m b e r  k s  = k ( R e  Fi/9 s in  0)~/z2 i s  a f u n c t i o n  o f  o n l y  o n e  
parameter S = (1.2 - 3 cot O/Re) (Re 3 sin O/We)Z/2. It follows from Eq. (4) that there 

exists a critical number (or a critical film thickness) 

, ~ ' -  K:~:~.7~, (5) 

and standing waves cannot exist on the film surface at values lower than this number. This 
condition is analogous to the existence of a minimum velocity for capillary-gravitational 

waves on the surface of an ideal fluid [5, 6]. For example, Re* = 19 for water at 0 = 75 ~ 
and Re* = 63 at 2.75 ~ It should be noted that the critical Re* for standing waves is 

markedly different from the critical Re for the formation of travelling waves, which is 
equal to cot 8 [i]. 

In the tests we conducted, waves were seen only under the conditions Re >> 3 cot @, 

S >> S*. Then Eq. (3) takes the simpler form 

/~ - ( ; "  5q; ( ) . . )1( !~ , / , ) ,  

o r  

(6) 

where the complex I,' (l'i M, 0)', '~' (o :~ p:~&,v' ~in ())'/~ 

Equation (6) is valid at h/l << i. However, experience shows .that short standing waves 
with h/X >> 1 also exist on the film. Since short, low-amplitude surface waves are nearly 
"insensitive" to the wall and, thus, to viscosity, then it is natural to attempt to describe 
such waves by means of the theory of an ideal fluid. We have the following dispersion law 
[5] for capillary waves on deep water 

Equating the phase velocity of the waves to the surface velocity of the fluid us, we find 
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X 
P g~ s i l l  ~ 0 h i 

or, in dimensionless form 

1 , ~ ( i ~  ~ !1 , ' )~ I  :~. (8) 

As in the case of long waves on a viscous fluid, the wave number depends only on one complex 

Re/F. 

The dispersion law c = k/oh/p for capillary waves on shallow water [5] leads us to the 

formula 

for which it is useful to make a comparison with Eq. (6). It is evident that, other conditions 
being equal, the effect of viscosity is appreciable only in the numerical coefficient. 

Figure 3 shows experimentally measured values of the length of standing waves along the 
direction of film flow. Film thickness was determined from the theoretical Nusselt formula 
h = (3qv/g sin 0)I/3 . The need to use the theoretical thickness instead of the measured 
thickness is due to the fact that the smooth zone is almost always located within the initial 
section of the film - where the film thickness changes with distance (and is always greater 
than the theoretical value for the given type of inlet apparatus). Thus, all of the measure- 
ments were made at the end of the smooth zone near the wave-formation line, where deviations 
of the measured thickness from the theoretical value were minimal and did not exceed 10%. 

The test data was obtained under laminar flow conditions, i.e., at Re < 400-600. The 
minimum values of Re at which we could still observe standing waves was limited either by 
the critical values which follows from (5) or by the existence of travelling waves - which 
at small Re cover nearly the entire surface of the film. It should be noted that the actual 
values of Re* were considerably greater than the theoretical values. As can be seen from 
Fig. 3, wavelength decreases with an increase in film thickness. Given a film thickness, an 
increase in the angle of inclination also leads to a reduction in wavelength. 

Figure 4 shows experimental data generalized in the dimensionless coordinates [k, Re/F], 
which follow from the theoretical examination. The test points 1-3 pertain, respectively, to 
the water and solutions of glycerin and alcohol. The properties of these solutions are shown 
in Table 1 along with other information. The effect of Re, the angle 0, and the distance x 
is not shown on the graph, since all of the points are generalized within the range of 
measurement accuracy in the coordinates we used. 

At k ~ 5, the experimental points are located along relation I, which was obtained in a 
short-wave approximation for waves on the surface of an ideal fluid [Eq. (8)]. The syste- 
matic displacement of points downward from the theoretical relation is evidently due to the 
fact that the flow has not completely stabilized. In fact, with a stabilized flow, the sur- 
face velocity is somewhat higher and the length of the standing waves is somewhat smaller. 

621 



Z ..... r o l  

' f ~ o ~ o .  ~ IC) t ! 

q ~ ....... 

!@' 
q. ;C 

4"10- '6 8 I0 ~ 2 Re~F- 4 6 

Fig. 4 

On the whole, this led to an increase in the measured values of k and, thus, to an improve- 
ment in the correlation between the theory and experiment. 

The experimental points begin to deviate from relation I at k < 5, and at k ! 1 they 
already lie along line III, ob_tained for long waves on the surface of a viscous fluid [Eq. 

(6)]. The minimum values of k which were reliably measured in the experiment reached 0.6. 
For comparison, Fig. 4 shows curve II, constructed from Eq. (9) for an ideal fluid and 
passing 37% above line III. 

Thus, at k > 5, the standing waves are described by the short-wave approximations of 
the theory of waves on the surface of an ideal fluid. At 1 < k ! 5, there is a transition 
from short to long waves accompanied by an increase in the effect of viscosity. At 
0.6_! k ~ i, the theory of long waves on the surface of a flowing viscous film is valid. 
At k < 0.6, no standing waves are seen. 

Form of the Crests of Three-Dimensional Standing Waves. A simple approach was proposed 
in [5] for constructing the form of the crests of dispersive waves generated by a moving 
source. It was shown that in the case of a constant source velocity, the form of the crests 
is determined only by the ratio of the group velocity to the phase velocity. In particular, 
this approach can be used in theories of ship waves and waves on the surface of a layer of 
ideal fluid [5, 6]. 

Different dispersion laws [see Eqs. (i) and (7), as well as Fig. 2] exist for an 
obliquely-flowing viscous film, depending on the range of wave numbers. We will therefore 
use Lighthill's approach for a fairly general case, when the dispersion relations are 
approximated by a power law 

C : C I / ~ Y - I  ~ 

where ~ < i; c I is a constant. The group c = c + kdc/dk = yc, i.e., ~ is the ratio of 
the group velocity to the phase velocity. T~us, ~ = 3/2 for dispersion (7), ~ = 2 for 
capillary waves on shallow water, and y = 1 for nondispersive waves. 

The construction of the crests of three-dimensional waves is shown in Fig. 5. Let the 
source of the perturbation move at a velocity u in the direction of negative values of x 
and let it be located at the origin at the moment of time T. We will find the position of 
waves which are stationary relative to the source and are generated at the moment of time 
T = 0 for the moment when the source is located at the point (X, 0). We write the condition 
of stationarinessofthe wave front, moving in the direction q , in the form c = u cos q. 
Then a wave propagating at the angle q~ will travel the distance CB' = u cos q~. However, 
in reality, it follows from the theory of dispersive waves that this wave will be seen at 
the distance CB = Cg~ = ~c~ = ~u cos sT, i.e., y times farther. Analogously, CA = TUT. 
It follows from the last two relations that BC = AC cos q, so that the angle ABC is a right 
angle. Thus, the locus B is a circle. 
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Let us determine the form of the crest. The generatrix of the crest is perpendicular 
to the direction of propagation of the wave CB. We use geometric constructions to find the 

coordinates of the point B: 

., T.\" s in  2q 2. !/ .\'(1 - -  ~, u(,s ~ q,). (10) 

The angle of inclination of the wave front at point B relative to the x axis is determined by 

the expression 

d!lJ,,r ',' I ,~ q , .  (ii) 

Inserting (i0) into (ii) and solving the resulting ordinary differential equation, we obtain 
,Y l~(c.s q)~,,",v-~>, where b is the constant of integration. Excluding X from (I0), we obtain 

the equations 

It "~1, si,,  ( l : (cos  (i') ~/(~'-~), .* lJ{l - -  1' i'(Jse (F) (cos q , )v / (v - , )  

w h i c h  i n  p a r a m e t r i c  f o r m  d e s c r i b e  t h e  s h a p e  o f  t h e  c r e s t s  o f  t h e  s t a n d i n g  w a v e s .  T h e  c o n s t a n t  

b remains indeterminate within the framework of the linear theory. 

It is convenient to use dimensionless equations. To do this, we introduce the dimen- 
sionless coordinates x = x/a, y = y/a, where a ~ --r~I,= 0 I| --?I is the distance from the 
source to the crest of the wave along the y axis. To simplify the notation, we put cos2q~ -= ~. 

Then We finally have 

- v 1 / I  
V" ~ - 1  ~,/'-,(v-l~ ; (12) 

,: ( 13 ) 
7 t rz~','~(v J) " 

In the case of long capillary waves (~ = 2), system (12)-(13) reduces to the single 

formula 

which gives a wave crest of parabolic form. 
the crest shape). 

--I I fl".~ (14) 

_ _ (y 
At x = 0, y = Y0 = 2 0 is a characteristic of 

For short capillary waves, ~ = 3/2, and Eqs. (12) and (13) take the form 

7 (2 - -  :~z).<:v~; (15) 

!/ : ~ g J  - -  ~,>4. (16) 

The form of the crest constructed from (15! and !16) is shown in Fig. 6 (line i). At y § 
in the asymptote, we obtain the power law x = 2(y/3)3/2 

Table 2 shows values of the crest shape characteristics - the distance Y0 and the 
angle ~ represented in Fig. 6 - as a function of the dispersion law. 

The three-dimensional standing waves and the travelling waves seen in the experiment 
were analyzed as follows. First we chose the presumed dispersion law. We then used the 
angle ~ to determine the position of the coordinate origin (the position of the source) for 
a specific crest, as shown in Fig. 6. The distance OA served as the characteristic scale in 
converting the coordinates of the crest to dimensionless form. For naturally formed 
travelling waves, the origin should be regarded as the location of an equivalent source. 
The same can be said in the case of analysis of standing waves with an arbitrarily chosen 
dispersion law, when the position of the actual source and the calculated coordinate origin 
do not coincide. 

In coordinates chosen for a dispersion law with y = 3/2, Fig. 6 shows experimental data 
for short three-dimensional standing waves (k ~ 5) at different Re, fluid properties, and 
angles of trough inclination 0. The theoretical form of the crest (line i) was constructed 
from Eqs. (115) and (16). Each specific crest was represented by 8 points. We thus analyzed 
more than i00 crests. This included different crests from one source (such as all of the 
crests depicted in Fig. i, a and b). Different points in Fig. 6 correspond to different 
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crests under different conditions. However, these conditions are not manifest on the graph, 
since, within the statistical scatter, we found that Re, the fluid properties, the angle 
of inclination 8, and the se[ial number of the crest did not affect the analysis of the data 
in the above coordinates at k > 5. 

It follows frcmthe graph that the deviation of the experimental points from the theore- 
tical curve is 0-20%. The same data analyzed in the coordinates for a dispersion law with 

= 2 deviates considerably from the corresponding theoretical curve. 

Long standing waves with the wave number k < 1.5 were analyzed in the coordinates for 
dispersion laws with u = 2 and 1.5. The data was readily generalized in dimensionless 
coordinates, but the experimental points again systematically deviated downward from the 
theoretical curve. One unexpected finding was that better agreement is obtained between 
the theory and experiment for long standing waves in the case of a dispersion law with y = 3/2 
(i.e., in the short-wave case). 

A similar analysis was made of travelling three-dimensional waves, although in this 
instance it was difficult to expect good results in view of the transience and nonlinearity 
of travelling waves. Nevertheless, a satisfactory generalization and agreement between the 
theory and experiment were obtained (albeit with a large scatter of points) if we set y = 2.2. 
It should be noted that this value is close to the value of y for long capillary waves. 

To adequately describe three-dimensional standing waves on a flowing viscous film, it 
is evidently necessary to examine the three-dimensional equations of motion in order to allow 
for the dependence of phase velocity not only on the wave number, but also on the direction 
of wave propagation. 
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